METRIC AND TOPOLOGICAL SPACES: EXAM 2023/24

A. V. KISELEV

Problem 1 (20%). The discrete metric d_0 on \mathbb{R} attains exactly two distinct values. Can a metric ρ on \mathbb{R} attain exactly four distinct values? (If not, prove; if yes, give example)

Problem 2 (15 + 10%). (a) If $A \subsetneq \mathfrak{X}$ is a complete subset of a metric space $(\mathfrak{X}, d_{\mathfrak{X}})$, then A is closed in \mathfrak{X} . (prove) (b) Give an example $A \subsetneq \mathfrak{X}$ of (a) when \mathfrak{X} itself is not complete.

Problem 3 (15%). Give an example of a sequence of open connected subsets $L_n \subsetneq \mathbb{E}^3$ in space such that $L_n \supseteq L_{n+1}$ for all $n \in \mathbb{N}$ but the intersection $\bigcap_{n=1}^{+\infty} L_n$ is not connected.

(NB: \emptyset is connected)

Problem 4 (10 + 10%). (a) Suppose $V_n \neq \emptyset$, $n \in \mathbb{N}$, is a closed subset of sequentially compact space \mathcal{X} , and $V_n \supseteq V_{n+1}$. Prove that $\bigcap_{n=1}^{+\infty} V_n \neq \emptyset$.

(b) Is this intersection always non-empty if \mathcal{X} is not sequentially compact? (state and prove, e.g., by counterexample)

Problem 5 (20%). Find a solution x(s) of the integral equation, $x(s) = \frac{1}{2} \int_0^1 x(t) dt + \exp(s) - \frac{1}{2}(\exp(1) - 1),$ by consecutive approximations starting from $x_0(s) = 0.$

Please verify by direct substitution that it satisfies the equation!

Date: November 6, 2023. Good luck & take care !