METRIC AND TOPOLOGICAL SPACES: EXAM 2023/24

A. V. KISELEV

Problem 1 (20\%). The discrete metric d_{0} on \mathbb{R} attains exactly two distinct values. Can a metric ϱ on \mathbb{R} attain exactly four distinct values? (If not, prove; if yes, give example)

Problem $2(15+10 \%)$. (a) If $A \subsetneq X$ is a complete subset of a metric space $(X, \mathrm{~d} x)$, then A is closed in X. (prove)
(b) Give an example $A \subsetneq X$ of (a) when X itself is not complete.

Problem 3 (15\%). Give an example of a sequence of open connected subsets $L_{n} \subsetneq \mathbb{E}^{3}$ in space such that $L_{n} \supseteq L_{n+1}$ for all $n \in \mathbb{N}$ but the intersection $\bigcap_{n=1}^{+\infty} L_{n}$ is not connected.
(NB: \varnothing is connected)

Problem $4(10+10 \%)$. (a) Suppose $V_{n} \neq \varnothing, n \in \mathbb{N}$, is a closed subset of sequentially compact space X, and $V_{n} \supseteq V_{n+1}$. Prove that $\bigcap_{n=1}^{+\infty} V_{n} \neq \varnothing$.
(b) Is this intersection always non-empty if X is not sequentially compact? (state and prove, e.g., by counterexample)

Problem 5 (20\%). Find a solution $x(s)$ of the integral equation,

$$
x(s)=\frac{1}{2} \int_{0}^{1} x(t) \mathrm{d} t+\exp (s)-\frac{1}{2}(\exp (1)-1)
$$

by consecutive approximations starting from $x_{0}(s)=0$.
Please verify by direct substitution that it satisfies the equation!

